Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses.

Identifieur interne : 000051 ( Main/Exploration ); précédent : 000050; suivant : 000052

SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses.

Auteurs : Orian Sussholz [Israël] ; Lorena Pizarro [Israël] ; Silvia Schuster [Israël] ; Adi Avni [Israël]

Source :

RBID : pubmed:33048397

Abstract

The first line of plant defense occurs when a plant pattern recognition receptor (PRR) recognizes microbe-associated molecular patterns. Plant PRRs are either receptor-like kinases (RLKs), which have an extracellular domain for ligand binding, a single-pass transmembrane domain, and an intracellular kinase domain for activating downstream signaling, or receptor-like proteins (RLPs), which share the same overall structure but lack an intracellular kinase domain. The tomato (Solanum lycopersicum) LeEIX2 is an RLP that binds ethylene-inducing xylanase (EIX), a fungal elicitor. To identify LeEIX2 receptor interactors, we conducted a yeast two-hybrid screen and found a tomato protein that we termed SlRLK-like. The interaction of LeEIX2 with SlRLK-like was verified using co-immunoprecipitation and bimolecular fluorescence complementation assays. The defense responses induced by EIX were markedly reduced when SlRLK-like was overexpressed in Nicotiana benthamiana or Nicotiana tabacum, and knockout of SlRLK-like using the CRISPR/Cas9 system increased EIX-induced ethylene production and 1-aminocyclopropane-1-carboxylate synthase (SlACS2) gene expression in tomato. Co-expression of SlRLK-like with LeEIX2 led to a reduction in its abundance, apparently through an endoplasmic reticulum-associated degradation process. Notably, truncation of SlRLK-like protein revealed that the malectin-like domain is sufficient and essential for its function. Moreover, SlRLK-like associated with the RLK FLS2, resulting in its degradation and concomitantly a reduction of the flagellin 22 (flg22)-induced burst of reactive oxygen species. In addition, SlRLK-like co-expression with other RLPs, Ve1 and AtRLP23, also led to a reduction in their abundance. Our findings suggest that SlRLK-like leads to a decreased stability of various PRRs, leading to a reduction in their abundance and resulting in attenuation of defense responses.

DOI: 10.1111/tpj.15006
PubMed: 33048397


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses.</title>
<author>
<name sortKey="Sussholz, Orian" sort="Sussholz, Orian" uniqKey="Sussholz O" first="Orian" last="Sussholz">Orian Sussholz</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978</wicri:regionArea>
<wicri:noRegion>69978</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pizarro, Lorena" sort="Pizarro, Lorena" uniqKey="Pizarro L" first="Lorena" last="Pizarro">Lorena Pizarro</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978</wicri:regionArea>
<wicri:noRegion>69978</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schuster, Silvia" sort="Schuster, Silvia" uniqKey="Schuster S" first="Silvia" last="Schuster">Silvia Schuster</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978</wicri:regionArea>
<wicri:noRegion>69978</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Avni, Adi" sort="Avni, Adi" uniqKey="Avni A" first="Adi" last="Avni">Adi Avni</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978</wicri:regionArea>
<wicri:noRegion>69978</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33048397</idno>
<idno type="pmid">33048397</idno>
<idno type="doi">10.1111/tpj.15006</idno>
<idno type="wicri:Area/Main/Corpus">000031</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000031</idno>
<idno type="wicri:Area/Main/Curation">000031</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000031</idno>
<idno type="wicri:Area/Main/Exploration">000031</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses.</title>
<author>
<name sortKey="Sussholz, Orian" sort="Sussholz, Orian" uniqKey="Sussholz O" first="Orian" last="Sussholz">Orian Sussholz</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978</wicri:regionArea>
<wicri:noRegion>69978</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pizarro, Lorena" sort="Pizarro, Lorena" uniqKey="Pizarro L" first="Lorena" last="Pizarro">Lorena Pizarro</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978</wicri:regionArea>
<wicri:noRegion>69978</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schuster, Silvia" sort="Schuster, Silvia" uniqKey="Schuster S" first="Silvia" last="Schuster">Silvia Schuster</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978</wicri:regionArea>
<wicri:noRegion>69978</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Avni, Adi" sort="Avni, Adi" uniqKey="Avni A" first="Adi" last="Avni">Adi Avni</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978</wicri:regionArea>
<wicri:noRegion>69978</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The first line of plant defense occurs when a plant pattern recognition receptor (PRR) recognizes microbe-associated molecular patterns. Plant PRRs are either receptor-like kinases (RLKs), which have an extracellular domain for ligand binding, a single-pass transmembrane domain, and an intracellular kinase domain for activating downstream signaling, or receptor-like proteins (RLPs), which share the same overall structure but lack an intracellular kinase domain. The tomato (Solanum lycopersicum) LeEIX2 is an RLP that binds ethylene-inducing xylanase (EIX), a fungal elicitor. To identify LeEIX2 receptor interactors, we conducted a yeast two-hybrid screen and found a tomato protein that we termed SlRLK-like. The interaction of LeEIX2 with SlRLK-like was verified using co-immunoprecipitation and bimolecular fluorescence complementation assays. The defense responses induced by EIX were markedly reduced when SlRLK-like was overexpressed in Nicotiana benthamiana or Nicotiana tabacum, and knockout of SlRLK-like using the CRISPR/Cas9 system increased EIX-induced ethylene production and 1-aminocyclopropane-1-carboxylate synthase (SlACS2) gene expression in tomato. Co-expression of SlRLK-like with LeEIX2 led to a reduction in its abundance, apparently through an endoplasmic reticulum-associated degradation process. Notably, truncation of SlRLK-like protein revealed that the malectin-like domain is sufficient and essential for its function. Moreover, SlRLK-like associated with the RLK FLS2, resulting in its degradation and concomitantly a reduction of the flagellin 22 (flg22)-induced burst of reactive oxygen species. In addition, SlRLK-like co-expression with other RLPs, Ve1 and AtRLP23, also led to a reduction in their abundance. Our findings suggest that SlRLK-like leads to a decreased stability of various PRRs, leading to a reduction in their abundance and resulting in attenuation of defense responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33048397</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.15006</ELocationID>
<Abstract>
<AbstractText>The first line of plant defense occurs when a plant pattern recognition receptor (PRR) recognizes microbe-associated molecular patterns. Plant PRRs are either receptor-like kinases (RLKs), which have an extracellular domain for ligand binding, a single-pass transmembrane domain, and an intracellular kinase domain for activating downstream signaling, or receptor-like proteins (RLPs), which share the same overall structure but lack an intracellular kinase domain. The tomato (Solanum lycopersicum) LeEIX2 is an RLP that binds ethylene-inducing xylanase (EIX), a fungal elicitor. To identify LeEIX2 receptor interactors, we conducted a yeast two-hybrid screen and found a tomato protein that we termed SlRLK-like. The interaction of LeEIX2 with SlRLK-like was verified using co-immunoprecipitation and bimolecular fluorescence complementation assays. The defense responses induced by EIX were markedly reduced when SlRLK-like was overexpressed in Nicotiana benthamiana or Nicotiana tabacum, and knockout of SlRLK-like using the CRISPR/Cas9 system increased EIX-induced ethylene production and 1-aminocyclopropane-1-carboxylate synthase (SlACS2) gene expression in tomato. Co-expression of SlRLK-like with LeEIX2 led to a reduction in its abundance, apparently through an endoplasmic reticulum-associated degradation process. Notably, truncation of SlRLK-like protein revealed that the malectin-like domain is sufficient and essential for its function. Moreover, SlRLK-like associated with the RLK FLS2, resulting in its degradation and concomitantly a reduction of the flagellin 22 (flg22)-induced burst of reactive oxygen species. In addition, SlRLK-like co-expression with other RLPs, Ve1 and AtRLP23, also led to a reduction in their abundance. Our findings suggest that SlRLK-like leads to a decreased stability of various PRRs, leading to a reduction in their abundance and resulting in attenuation of defense responses.</AbstractText>
<CopyrightInformation>© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sussholz</LastName>
<ForeName>Orian</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pizarro</LastName>
<ForeName>Lorena</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5954-5839</Identifier>
<AffiliationInfo>
<Affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schuster</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Avni</LastName>
<ForeName>Adi</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-2092-9768</Identifier>
<AffiliationInfo>
<Affiliation>School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2013227</GrantID>
<Agency>United States-Israel Binational Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>550/18</GrantID>
<Agency>Israel Science Foundation administered by the Israel Academy of Science and Humanities</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>IS-4842-15 R</GrantID>
<Agency>United States - Israel Binational Agricultural Research and Development Fund</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>13-37-0001</GrantID>
<Agency>Chief Scientist of the Israel Ministry of Agriculture and Rural Development</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">malectin-like domain</Keyword>
<Keyword MajorTopicYN="N">pattern recognition receptor</Keyword>
<Keyword MajorTopicYN="N">plant immunity receptor-like kinase</Keyword>
<Keyword MajorTopicYN="N">receptor-like protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>12</Hour>
<Minute>15</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33048397</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.15006</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Albert, I., Böhm, H., Albert, M. et al. (2015) An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nature Plants, 1, 15140.</Citation>
</Reference>
<Reference>
<Citation>Avni, A., Bailey, B.A., Mattoo, A.K. and Anderson, J.D. (1994) Induction of Ethylene Biosynthesis in Nicotiana-Tabacum by a Trichoderma-Viride Xylanase Is Correlated to the Accumulation of 1-Aminocyclopropane-1-Carboxylic Acid (Acc) Synthase and Acc Oxidase Transcripts. Plant Physiol. 106, 1049-1055.</Citation>
</Reference>
<Reference>
<Citation>Bailey, B.A., Dean, J.F.D. and Anderson, J.D. (1990) An Ethylene Biosynthesis-Inducing Endoxylanase Elicits Electrolyte Leakage and Necrosis in Nicotiana-Tabacum Cv Xanthi Leaves. Plant Physiol. 94, 1849-1854.</Citation>
</Reference>
<Reference>
<Citation>Bailey, B.A., Korcak, R.F. and Anderson, J.D. (1993) Sensitivity to an Ethylene Biosynthesis-Inducing Endoxylanase in Nicotiana-Tabacum-L Cv Xanthi Is Controlled by a Single Dominant Gene. Plant Physiol. 101, 1081-1088.</Citation>
</Reference>
<Reference>
<Citation>Bar, M., Sharfman, M., Ron, M. and Avni, A. (2010) BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J. 63, 791-800.</Citation>
</Reference>
<Reference>
<Citation>Bar, M., Sharfman, M., Schuster, S. and Avni, A. (2009) The coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling. PLoS One, 4, e7973.</Citation>
</Reference>
<Reference>
<Citation>Bi, G., Liebrand, T.W.H., Cordewener, J.H.G. and America, A.H.P. (2014) Arabidopsis thaliana receptor-like protein At RLP23 associates with the receptor-like kinase At, SOBIR1, 1-5.</Citation>
</Reference>
<Reference>
<Citation>Bohm, H., Albert, I., Fan, L., Reinhard, A. and Nurnberger, T. (2014) Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20C, 47-54.</Citation>
</Reference>
<Reference>
<Citation>Boisson-Dernier, A., Kessler, S.A. and Grossniklaus, U. (2011) The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J. Exp. Bot. 62, 1581-1591.</Citation>
</Reference>
<Reference>
<Citation>Boller, T., Herner, R.C. and Kende, H. (1979) Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta, 145, 293-303.</Citation>
</Reference>
<Reference>
<Citation>Boller, T., Miescher-institut, F. and Box, P.O. (2000) FLS2: An LRR Receptor - like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in. Arabidopsis. 5, 1003-1011.</Citation>
</Reference>
<Reference>
<Citation>Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H. and Sheen, J. (2010) Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature, 464, 418-422.</Citation>
</Reference>
<Reference>
<Citation>Bracha-Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S. and Ohad, N. (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J. 40, 419-427.</Citation>
</Reference>
<Reference>
<Citation>Chen, Y., Hu, D., Yabe, R., Tateno, H., Qin, S.Y., Matsumoto, N., Hirabayashi, J. and Yamamoto, K. (2011) Role of malectin in Glc(2)Man(9)GlcNAc(2)-dependent quality control of alpha1-antitrypsin. Mol. Biol. Cell, 22, 3559-3570.</Citation>
</Reference>
<Reference>
<Citation>Cheung, A. (2011) New insights into the functional roles of CrRLKs in the control of plant cell growth and development AU - Nibau, Candida. Plant Signaling Behavior, 6, 655-659.</Citation>
</Reference>
<Reference>
<Citation>Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G. and Boller, T. (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 448, 497-500.</Citation>
</Reference>
<Reference>
<Citation>Dangl, J.L., Horvath, D.M. and Staskawicz, B.J. (2013) Pivoting the plant immune system from dissection to deployment. Science, 341, 746-751.</Citation>
</Reference>
<Reference>
<Citation>Dereeper, A., Guignon, V., Blanc, G. et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465-469.</Citation>
</Reference>
<Reference>
<Citation>Ebel, J. and Cosio, E.G. (1994) Elicitors of Plant Defense Responses. International Review of Cytology - a Survey of Cell Biology, 148, 1-36.</Citation>
</Reference>
<Reference>
<Citation>Engelsdorf, T. and Hamann, T. (2014) An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Ann. Bot. 114, 1339-1347.</Citation>
</Reference>
<Reference>
<Citation>Fan, J., Yu, L. and Xu, C. (2019) Dual Role for Autophagy in Lipid Metabolism in Arabidopsis. Plant Cell, 31, 1598-1613.</Citation>
</Reference>
<Reference>
<Citation>Fauser, F., Schiml, S. and Puchta, H. (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359.</Citation>
</Reference>
<Reference>
<Citation>Felix, G., Duran, J.D., Volko, S. and Boller, T. (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265-276.</Citation>
</Reference>
<Reference>
<Citation>Fradin, E.F., Zhang, Z., Juarez Ayala, J.C., Castroverde, C.D., Nazar, R.N., Robb, J., Liu, C.M. and Thomma, B.P. (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 150, 320-332.</Citation>
</Reference>
<Reference>
<Citation>Franck, C.M., Westermann, J. and Boisson-Dernier, A. (2018) Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. Annu. Rev. Plant Biol. 69, 301-328.</Citation>
</Reference>
<Reference>
<Citation>Fuchs, Y., Saxena, A., Gamble, H.R. and Anderson, J.D. (1989) Ethylene Biosynthesis-Inducing Protein from Cellulysin Is an Endoxylanase. Plant Physiol. 89, 138-143.</Citation>
</Reference>
<Reference>
<Citation>Galindo-Trigo, S., Gray, J.E. and Smith, L.M. (2016) Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms. Front Plant Sci, 7, 1269.</Citation>
</Reference>
<Reference>
<Citation>Galli, C., Bernasconi, R., Solda, T., Calanca, V. and Molinari, M. (2011) Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER. PLoS One, 6, e16304.</Citation>
</Reference>
<Reference>
<Citation>Have, M., Luo, J., Tellier, F., Balliau, T., Cueff, G., Chardon, F., Zivy, M., Rajjou, L., Cacas, J.L. and Masclaux-Daubresse, C. (2019) Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. New Phytol., 223, 1461-1477.</Citation>
</Reference>
<Reference>
<Citation>Iyer, K., Burkle, L., Auerbach, D., Thaminy, S., Dinkel, M., Engels, K. and Stagljar, I. (2005) Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci STKE, 2005, pl3.</Citation>
</Reference>
<Reference>
<Citation>Kawchuk, L.M., Hachey, J., Lynch, D.R. et al. (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A, 98, 6511-6515.</Citation>
</Reference>
<Reference>
<Citation>Lee, J.S., Kuroha, T., Hnilova, M., Khatayevich, D., Kanaoka, M.M., McAbee, J.M., Sarikaya, M., Tamerler, C. and Torii, K.U. (2012) Direct interaction of ligand-receptor pairs specifying stomatal patterning. Genes Dev. 26, 126-136.</Citation>
</Reference>
<Reference>
<Citation>Leibman-Markus, M., Pizarro, L., Schuster, S., Lin, Z.J.D., Gershony, O., Bar, M., Coaker, G. and Avni, A. (2018) The intracellular nucleotide-binding leucine-rich repeat receptor (SlNRC4a) enhances immune signalling elicited by extracellular perception. Plant Cell Environ. 41(10), 2313-2327.</Citation>
</Reference>
<Reference>
<Citation>Leibman-Markus, M., Schuster, S. and Avni, A. (2017) LeEIX2 Interactors' analysis and EIX-mediated responses measurement. Methods Mol. Biol. 1578, 167-172.</Citation>
</Reference>
<Reference>
<Citation>Li, R., Liu, P., Wan, Y. et al. (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell, 24, 2105-2122.</Citation>
</Reference>
<Reference>
<Citation>Liebrand, T.W., van den Berg, G.C., Zhang, Z. et al. (2013) Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl Acad. Sci. USA, 110, 10010-10015.</Citation>
</Reference>
<Reference>
<Citation>Lindner, H., Müller, L.M., Boisson-Dernier, A. and Grossniklaus, U. (2012) CrRLK1L receptor-like kinases: not just another brick in the wall. Curr. Opin. Plant Biol. 15, 659-669.</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., Schiff, M. and Dinesh-Kumar, S.P. (2002) Virus-induced gene silencing in tomato. Plant J. 31, 777-786.</Citation>
</Reference>
<Reference>
<Citation>Liu, D., Shi, L., Han, C., Yu, J., Li, D. and Zhang, Y. (2012) Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One, 7, e46451.</Citation>
</Reference>
<Reference>
<Citation>Mang, H.G., Feng, B.M., Hu, Z.J. et al. (2017) Differential regulation of two-tiered plant immunity and sexual reproduction by ANXUR receptor-like kinases. Plant Cell, 29, 3140-3156.</Citation>
</Reference>
<Reference>
<Citation>Masclaux-Daubresse, C., Chen, Q. and Have, M. (2017) Regulation of nutrient recycling via autophagy. Curr. Opin. Plant Biol. 39, 8-17.</Citation>
</Reference>
<Reference>
<Citation>Matarasso, N., Schuster, S. and Avni, A. (2005) A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic Acid synthase gene expression. Plant Cell, 17, 1205-1216.</Citation>
</Reference>
<Reference>
<Citation>McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R. and Fraley, R. (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5, 81-84.</Citation>
</Reference>
<Reference>
<Citation>Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132.</Citation>
</Reference>
<Reference>
<Citation>Nelson, B.K., Cai, X. and Nebenfuhr, A. (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126-1136.</Citation>
</Reference>
<Reference>
<Citation>Nguyen, Q.N., Lee, Y.S., Cho, L.H., Jeong, H.J., An, G. and Jung, K.H. (2015) Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice. Planta, 241, 603-613.</Citation>
</Reference>
<Reference>
<Citation>Nissen, K.S., Willats, W.G.T. and Malinovsky, F.G. (2016) Understanding CrRLK1L Function: Cell Walls and Growth Control. Trends Plant Sci. 21, 516-527.</Citation>
</Reference>
<Reference>
<Citation>Nitsch, J.P. and Nitsch, C. (1969) Haploid plants from pollen grains. Science, 163, 85-87.</Citation>
</Reference>
<Reference>
<Citation>Pilotti, M., Brunetti, A., Uva, P., Lumia, V., Tizzani, L., Gervasi, F., Iacono, M. and Pindo, M. (2014) Kinase domain-targeted isolation of defense-related receptor-like kinases (RLK/Pelle) in Platanusxacerifolia: phylogenetic and structural analysis. BMC Res. Notes, 7, 884.</Citation>
</Reference>
<Reference>
<Citation>Pizarro, L., Leibman-Markus, M., Schuster, S., Bar, M., Meltz, T. and Avni, A. (2018) Tomato Prenylated RAB acceptor protein 1 modulates trafficking and degradation of the pattern recognition receptor LeEIX2, affecting the innate immune response. Front Plant Sci. 9, 257.</Citation>
</Reference>
<Reference>
<Citation>Ricci, P., Panabieres, F., Bonnet, P., Maia, N., Ponchet, M., Devergne, J.C., Marais, A., Cardin, L., Milat, M.L. and Blein, J.P. (1993) Proteinaceous elicitors of plant defense responses. In Mechanisms of plant defense responses (Legrand, M. and Fritig, B. eds). Dordrech, the Netherlands: Kluwer Academic Publishers, pp. 121-135.</Citation>
</Reference>
<Reference>
<Citation>Ron, M. and Avni, A. (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell, 16, 1604-1615.</Citation>
</Reference>
<Reference>
<Citation>Sakamoto, T., Deguchi, M., Brustolini, O.J., Santos, A.A., Silva, F.F. and Fontes, E.P. (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol. 12, 229.</Citation>
</Reference>
<Reference>
<Citation>Schallus, T., Jaeckh, C., Feher, K. et al. (2008) Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol. Biol. Cell, 19, 3404-3414.</Citation>
</Reference>
<Reference>
<Citation>Schulze-Muth, P., Irmler, S., Schroder, G. and Schroder, J. (1996) Novel type of receptor-like protein kinase from a higher plant (Catharanthus roseus). cDNA, gene, intramolecular autophosphorylation, and identification of a threonine important for auto- and substrate phosphorylation. J Biol. Chem. 271, 26684-26689.</Citation>
</Reference>
<Reference>
<Citation>Sharfman, M., Bar, M., Ehrlich, M., Schuster, S., Melech-Bonfil, S., Ezer, R., Sessa, G. and Avni, A. (2011) Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. Plant J. 68, 413-423.</Citation>
</Reference>
<Reference>
<Citation>Smith, M. and Wilkinson, S. (2017) ER homeostasis and autophagy. Essays Biochem. 61, 625-635.</Citation>
</Reference>
<Reference>
<Citation>Tannous, A., Pisoni, G.B., Hebert, D.N. and Molinari, M. (2015) N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol. 41, 79-89.</Citation>
</Reference>
<Reference>
<Citation>Thomma, B.P., Nurnberger, T. and Joosten, M.H. (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell, 23, 4-15.</Citation>
</Reference>
<Reference>
<Citation>Vanengelen, F.A., Molthoff, J.W., Conner, A.J., Nap, J.P., Pereira, A. and Stiekema, W.J. (1995) Pbinplus - an Improved Plant Transformation Vector Based on Pbin19. Transgenic Res. 4, 288-290.</Citation>
</Reference>
<Reference>
<Citation>Win, J., Chaparro-Garcia, A., Belhaj, K. et al. (2012) Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 77, 235-247.</Citation>
</Reference>
<Reference>
<Citation>Xiang, T., Zong, N., Zou, Y. et al. (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol. 18, 74-80.</Citation>
</Reference>
<Reference>
<Citation>Zeng, Y., Li, B., Zhang, W. and Jiang, L. (2019) ER-Phagy and ER Stress Response (ERSR) in Plants. Front Plant Sci, 10, 1192.</Citation>
</Reference>
<Reference>
<Citation>Zhang, W., Fraiture, M., Kolb, D., Loffelhardt, B., Desaki, Y., Boutrot, F.F., Tor, M., Zipfel, C., Gust, A.A. and Brunner, F. (2013) Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell, 25, 4227-4241.</Citation>
</Reference>
<Reference>
<Citation>Zhu, Y.F., Wang, Y.Q., Li, R.L., Song, X.F., Wang, Q.L., Huang, S.J., Jin, J.B., Liu, C.M. and Lin, J.X. (2010) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J., 61, 223-233.</Citation>
</Reference>
<Reference>
<Citation>Zipfel, C. (2014) Plant pattern-recognition receptors. Trends Immunol. 35, 345-351.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Sussholz, Orian" sort="Sussholz, Orian" uniqKey="Sussholz O" first="Orian" last="Sussholz">Orian Sussholz</name>
</noRegion>
<name sortKey="Avni, Adi" sort="Avni, Adi" uniqKey="Avni A" first="Adi" last="Avni">Adi Avni</name>
<name sortKey="Pizarro, Lorena" sort="Pizarro, Lorena" uniqKey="Pizarro L" first="Lorena" last="Pizarro">Lorena Pizarro</name>
<name sortKey="Schuster, Silvia" sort="Schuster, Silvia" uniqKey="Schuster S" first="Silvia" last="Schuster">Silvia Schuster</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000051 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000051 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33048397
   |texte=   SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33048397" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020